免费无码视频|没戴奶罩两个乳头突出来|蜜桃成人网站|97人妻|魅影直播间b站直播有什么好处|少妇人妻偷人精品一区二区|黄片AV在线免费观看|99热r,影音先锋最新熟女av,国产厕拍第一页,日本人妻东京热综合网

統(tǒng)一熱線:18020500647

您所在的位置:精質(zhì)視覺 > 新聞中心> 基于深度學(xué)習(xí)的化纖外觀缺陷語義分割

基于深度學(xué)習(xí)的化纖外觀缺陷語義分割

2022-09-18 20:00:00 精質(zhì)視覺

  針對化纖外觀缺陷檢測使用基于深度學(xué)習(xí)的語義分割方法,總結(jié)了自以來基于深度學(xué)習(xí)的典型語義分割方法,并在此基礎(chǔ)上應(yīng)用到化纖外觀檢測項目上,取得了不錯的效果。GhF機(jī)器視覺檢測設(shè)備_CCD視覺檢測_外觀缺陷檢測系統(tǒng)_精質(zhì)視覺

  01 化纖外觀缺陷檢測背景GhF機(jī)器視覺檢測設(shè)備_CCD視覺檢測_外觀缺陷檢測系統(tǒng)_精質(zhì)視覺

GhF機(jī)器視覺檢測設(shè)備_CCD視覺檢測_外觀缺陷檢測系統(tǒng)_精質(zhì)視覺

化纖作為紡織制造的原料,由化纖生產(chǎn)企業(yè)進(jìn)入下游紡織企業(yè)前會收卷形成絲餅,但在絲餅生產(chǎn)中會有不同程度的損傷,如產(chǎn)生油污、毛絲、絆絲、斷絲等表面缺陷,這些缺陷會直接造成下游紡織企業(yè)生產(chǎn)的產(chǎn)品質(zhì)量不高。油污會影響織物的外觀以及上色;毛絲會使織造效率降低,同時使織物表面產(chǎn)生瑕疵;絆絲不僅會影響化纖的包裝外觀,而且在化纖后續(xù)加工容易產(chǎn)生斷頭和毛絲;而斷絲則直接導(dǎo)致化纖的不連續(xù)。因此需要對化纖絲餅進(jìn)行影響織物質(zhì)量的表面缺陷檢測,以確?;w出廠質(zhì)量。目前大部分生產(chǎn)廠家通過人工來檢測化纖外觀缺陷,既費時費力又不能保證質(zhì)量,使用機(jī)器視覺代替人工檢測對化纖生產(chǎn)企業(yè)是迫切需要的。GhF機(jī)器視覺檢測設(shè)備_CCD視覺檢測_外觀缺陷檢測系統(tǒng)_精質(zhì)視覺

  化纖外觀缺陷主要包括油污、碰毛、紙管破損、絆絲、毛絲、斷絲等,部分典型缺陷如圖1,這些缺陷大部分使用語義分割的方法來進(jìn)行。語義分割融合了圖像分割和目標(biāo)識別兩大技術(shù),將圖像分割成幾組具有特定語義類別的區(qū)域,屬于像素級別的密集分類問題。早期一般使用直方圖閾值化、混合化特征空間聚類、區(qū)域生長法以及基于SVM的方法等進(jìn)行圖像目標(biāo)語義分割,這些方法受缺陷和圖像本身影響較大,導(dǎo)致漏檢和誤檢比較嚴(yán)重,如油污檢測中使用直方圖閾值化容易導(dǎo)致顏色較淡的油污漏檢,以及絲線紋理誤檢為油污。GhF機(jī)器視覺檢測設(shè)備_CCD視覺檢測_外觀缺陷檢測系統(tǒng)_精質(zhì)視覺

  圖1. 化纖外觀典型缺陷GhF機(jī)器視覺檢測設(shè)備_CCD視覺檢測_外觀缺陷檢測系統(tǒng)_精質(zhì)視覺

  02 基于深度學(xué)習(xí)的語義分割GhF機(jī)器視覺檢測設(shè)備_CCD視覺檢測_外觀缺陷檢測系統(tǒng)_精質(zhì)視覺

  深度學(xué)習(xí)的概念自2006年提出以來,因其在圖像分類、檢測等基礎(chǔ)領(lǐng)域的優(yōu)秀表現(xiàn),取得了顯著的發(fā)展,特別是2012年Alex Krizhevsky等設(shè)計了AlexNet模型在ImageNet圖像分類挑戰(zhàn)賽上以領(lǐng)(ling)先第二名傳統(tǒng)方法10%的準(zhǔn)確率奪得冠(guan)軍,使得深度學(xué)習(xí)受到廣泛關(guān)注。此后,包括語義分割在內(nèi)的許多計算機(jī)視覺問題都開始使用深度學(xué)習(xí)算法,識別精度在部分領(lǐng)域甚至超過了人工識別精度?;谏疃葘W(xué)習(xí)的語義分割,一般有基于*的方法、基于信息融合的方法、基于循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的方法以及基于對抗生成網(wǎng)絡(luò)的方法等。GhF機(jī)器視覺檢測設(shè)備_CCD視覺檢測_外觀缺陷檢測系統(tǒng)_精質(zhì)視覺

  2.1 基于*的方法GhF機(jī)器視覺檢測設(shè)備_CCD視覺檢測_外觀缺陷檢測系統(tǒng)_精質(zhì)視覺

  ,Shelhamer等提出了基于全卷積神經(jīng)網(wǎng)絡(luò)(FCN)的語義分割方法,F(xiàn)CN作為圖像語義分割的先河,實現(xiàn)像素級別的分類,為后續(xù)使用CNN作為基礎(chǔ)的圖像語義分割模型提供重要基礎(chǔ)。如圖2所示,它將CNN 中的全連接層替換為卷積層,建立全卷積網(wǎng)絡(luò),輸入任意尺寸的圖像后,經(jīng)過學(xué)習(xí)以及處理產(chǎn)生相應(yīng)尺寸的輸出,然后對每個像素進(jìn)行分類,這個流程稱為編碼器;在分類完成后通過上采樣將分類結(jié)果映射到原圖像尺寸,得到密集的像素級別的標(biāo)簽,即語義分割結(jié)果,這部分流程被稱為*。FCN融合了多分辨率的信息,將不同大小的特征圖進(jìn)行上采樣并進(jìn)行融合,取得了較為精確的分割效果。GhF機(jī)器視覺檢測設(shè)備_CCD視覺檢測_外觀缺陷檢測系統(tǒng)_精質(zhì)視覺

  但是,F(xiàn)CN在解碼階段進(jìn)行上采樣時易丟失像素的位置信息而影響分割精度,如何巧妙設(shè)計*對分割結(jié)果至關(guān)重要,如2017年,由Badrinarayanan等提出的SegNet算法,SegNet的每個編碼器層都對應(yīng)一個*層,*的輸出被送入分類器獨立為每個像素產(chǎn)生類概率,特征圖中的空間位置能準(zhǔn)確地反映射到其初始位置,相較FCN能準(zhǔn)確地恢復(fù)圖像邊界信息,分割效果更好。GhF機(jī)器視覺檢測設(shè)備_CCD視覺檢測_外觀缺陷檢測系統(tǒng)_精質(zhì)視覺

  圖2. 全卷積神經(jīng)網(wǎng)絡(luò)(FCN)語義分割模型結(jié)構(gòu)GhF機(jī)器視覺檢測設(shè)備_CCD視覺檢測_外觀缺陷檢測系統(tǒng)_精質(zhì)視覺

  2.2 基于信息融合的方法GhF機(jī)器視覺檢測設(shè)備_CCD視覺檢測_外觀缺陷檢測系統(tǒng)_精質(zhì)視覺

  為了使語義分割效果更好,充分利用分割目標(biāo)的空間信息,于是對不同層次的信息進(jìn)行融合,一般來說有如下信息融合方式:像素級特征融合、多特征圖和多尺度融合。GhF機(jī)器視覺檢測設(shè)備_CCD視覺檢測_外觀缺陷檢測系統(tǒng)_精質(zhì)視覺

  圖3. 金字塔型空洞池化(ASPP)模塊GhF機(jī)器視覺檢測設(shè)備_CCD視覺檢測_外觀缺陷檢測系統(tǒng)_精質(zhì)視覺

  像素級特征融合方法中,如,Google研究團(tuán)隊的Chen L C等提出DeepLab V1模型,該模型引入了條件隨機(jī)場(CRF) 作為后處理模塊,將圖像中每個像素與CRF模型中的某個節(jié)點一一對應(yīng),衡量任意像素之間的聯(lián)(lian)系,實現(xiàn)底層圖像信息像素間的融合,實現(xiàn)了分割細(xì)節(jié)增強(qiáng);2016年,DeepLab V2在DeepLab V1的基礎(chǔ)上引入了金字塔型空洞池化(ASPP)模塊,選擇不同采樣率的帶孔卷積處理特征圖,提高了分割精度;2017年,DeepLab V3在DeepLab V2的基礎(chǔ)上繼續(xù)優(yōu)化ASPP結(jié)構(gòu),通過級聯(lián)多個空洞卷積結(jié)構(gòu),有效地提取了表現(xiàn)力強(qiáng)的特征;2018年,DeepLab V3+把DeepLabv3作為編碼器,骨干網(wǎng)絡(luò)使用了Xception模型,提高了語義分割的健壯性和運行速率。GhF機(jī)器視覺檢測設(shè)備_CCD視覺檢測_外觀缺陷檢測系統(tǒng)_精質(zhì)視覺

  多特征圖和多尺度融合方法中,如2015年,Liu W等提出金字塔場景解析網(wǎng)絡(luò)(ParseNet)將全局特征圖轉(zhuǎn)化為與局部特征圖相同的尺寸,不同類型的處理模塊側(cè)重于激活的不同區(qū)域的特征圖,合并后輸入下一層或用于學(xué)習(xí)分類器,有效地利用了前面層所提供的上下文信息,取得了比FCN 跳躍結(jié)構(gòu)更好的分割效果。2020年,Ho Kei Cheng等提出CascadePSP,采用一幅圖像和多個不同尺度的不完美分割掩模來生成細(xì)化的分割,多尺度輸入使模型捕獲不同層次的結(jié)構(gòu)和邊界信息,自適應(yīng)地融合不同的掩模(mo)特征,所有低分辨率的輸入分段都被雙線性向上采樣到相同的大小,并與RGB圖像連接;CascadePSP是一種通用的級聯(lián)分割細(xì)化模型,它可以細(xì)化任何給定的輸入分割,在不進(jìn)行微調(diào)的情況下提高現(xiàn)有分割模型的性能。GhF機(jī)器視覺檢測設(shè)備_CCD視覺檢測_外觀缺陷檢測系統(tǒng)_精質(zhì)視覺

  2.3 基于循環(huán)神經(jīng)網(wǎng)絡(luò)的方法GhF機(jī)器視覺檢測設(shè)備_CCD視覺檢測_外觀缺陷檢測系統(tǒng)_精質(zhì)視覺

  循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)是一種基于記憶的網(wǎng)絡(luò)模型,它從連續(xù)數(shù)據(jù)中學(xué)習(xí)長期依賴關(guān)系的能力和保持記憶的能力,具有周期性的連接和通過對圖像的長期語義依賴進(jìn)行建模來捕獲圖像中的上下文的能力,成功應(yīng)用于語義分割。如2015年,Visin F基于用于圖像分類的ReNet提出了ReSeg語義分割,該模型中每個ReNet層由4個RNN組成(水平、豎直掃描圖像),將激活信息或圖塊編碼并生成相應(yīng)的全局特征,ReNet層堆疊在預(yù)訓(xùn)練的卷積結(jié)構(gòu)上,生成一般局部特征,通過全局特征和局部特征上采樣得到分割圖。GhF機(jī)器視覺檢測設(shè)備_CCD視覺檢測_外觀缺陷檢測系統(tǒng)_精質(zhì)視覺

  2.4 基于對抗生成網(wǎng)絡(luò)的方法GhF機(jī)器視覺檢測設(shè)備_CCD視覺檢測_外觀缺陷檢測系統(tǒng)_精質(zhì)視覺

  2016年,Pauline Luc等在文獻(xiàn)《Semantic Segmentation using Adversarial Networks》*將對抗生成網(wǎng)絡(luò)(GAN)應(yīng)用到語義分割中,他們使用判別器識別真實標(biāo)簽與分割圖像,縮小標(biāo)簽與分割圖像之間的高次不一致性。該網(wǎng)絡(luò)模型由一個分割器(即普通的分割網(wǎng)絡(luò)模型)作為生(sheng)成器,其后添加一個判別網(wǎng)絡(luò)結(jié)構(gòu),通過GAN 產(chǎn)生高質(zhì)量的生成圖像來改進(jìn)像素分類,該方法分割效果一般,是對抗生成網(wǎng)絡(luò)(GAN)應(yīng)用到語義分割一次有效的嘗試。后續(xù)基于對抗生成網(wǎng)絡(luò)的半監(jiān)督語義分割有一定發(fā)展,如2017年的《An Adversarial Regularisation for Semi-Supervised Training of Structured Output Neural Networks》。GhF機(jī)器視覺檢測設(shè)備_CCD視覺檢測_外觀缺陷檢測系統(tǒng)_精質(zhì)視覺

  03 語義分割對化纖外觀缺陷的檢測GhF機(jī)器視覺檢測設(shè)備_CCD視覺檢測_外觀缺陷檢測系統(tǒng)_精質(zhì)視覺

  對化纖外觀缺陷中的油污、碰毛以及紙管破損進(jìn)行了分析,采用基于深度學(xué)習(xí)語義分割的方法,對正負(fù)缺陷樣本極不平衡的情況進(jìn)行了處理,設(shè)計了使用本項目的損失函數(shù),同時對油污、碰毛以及紙管破損的特征進(jìn)行分析,對缺陷得到了較好的分割效果,得到了客戶的認(rèn)可,具體效果見圖4。GhF機(jī)器視覺檢測設(shè)備_CCD視覺檢測_外觀缺陷檢測系統(tǒng)_精質(zhì)視覺

 GhF機(jī)器視覺檢測設(shè)備_CCD視覺檢測_外觀缺陷檢測系統(tǒng)_精質(zhì)視覺

相關(guān)產(chǎn)品

天天操精品| 无套中出电影网站| youjizz熟妇| 伊人久久狼人APP| JULIA无码破解精品一区二区| 我看黄色毛片在线| 国产精品亚洲一区二区三区在线| 亚洲av色天堂| 五月青青停停| 哺乳人妻奶头奶91| 伊人网在线2| 大香蕉久网视频| 美女自慰专区| 色婷婷八月天香| 日韩一二三AV| 不卡AV免费| 午夜无码小电影| 91人人妻人人澡人人爽人人s| 日韩欧美在线观看一区二区三区| 甜蜜惩罚第1季无马赛有广告吗| 日韩精品50路一区| 超碰97 人人干 人人操 人人摸| 国产激情21| 白嫩美女AV| 情色va一区二区| 夜夜爱爱 视频| 绯色av一区二区三区四区| 日韩五十路女人的黄色网址| 中文字幕成人电影| 久久草福利电影| 日韩精品免费一区二区三区夜夜嗨| 色吧欧美性爱| 99色虐待导航| 露脸国语操插| 亚欧人妻av| 人人摸人人干人人噜| 红楼AV一区二区| 丝袜乱伦大香蕉| 国产亚洲美女精品久久久久| 淫色成人av不卡| 丁香婷婷五月伊人综合| 亚州色爽视频网站| 国产精品美女搞基| 97av影视| 琪琪久久、。| 五月丁香熟女| 日本熟女乱子视频| 欧美乱妇狂野欧美在线视频| 日本极品熟妇家庭乱伦| 美女白桃蜜桃久久久| 人妻电影精品| 欧美日韩中文字幕精品一区| 无码电影sss| 乱伦天堂网| 亚洲性生活一级片| 亚洲综合精品性爱| 大大香蕉网| 激情男女五月天| 激情六月av| 国产人人射| www.、涩涩| 亚洲欧美另类图片| 色呦呦视频网站在线观看| 男人的天堂av无码| 欧美日韩女优一区二区| 美女自慰小网站| 国产精品一二| 11p人| 蜜桃香蕉影院人妻| 亚洲色AV一区| 色 成人 少妇| 精品久久人人干人人操91| 天天干天堂| 婷婷五 月激情乱轮视频| 色欲插插来吧综合| 日韩直播在线精品| 91黑人无码| 久久亚洲AV永久无码精品成人| 久久最新国产精品| 亚欧洲精品在线视频| 亚在线| ”人妻,人人操,人妻。| 日日夜夜综合网,天天中文综合| av今日在线观看| 1028人妻论坛入口| 97超碰站| 亚洲AV无码鲁大师| 中文字幕第82页亚洲综合|